
ShapeScript: Toward shape-
based visual programming

Kelsey Kurzeja



Goal = Visual programming

• Create a visual programming language that does not use a graph-
based dataflow paradigm.

✓



Elements of programming languages

Element Standard ShapeScript

Data Numbers Shapes

Arithmetic Add, multiply, etc. Find & replace

Instruction specification Function Construction

Conditionals If Boolean is true If shape is found

Repetition Loops, recursive functions Recursive construction



What is a ShapeScript program?

• Construction: a ShapeScript procedure
• A sequence of instructions

• Instruction:
• CreateShape, CopyShape, Construct, Evaluate, 

Find, Replace, PickRandom, PickConstruction 

• Creates a new object (usually)

• Object: 
• Shape, Subshape, Construction, or List

Construction1(parameters)

object1 = Instruction1(…)

object2 = Instruction2(…)

object3 = Instruction3(…)

object4 = Instruction4(…)

…

Construction2(parameters)

object1 = Instruction1(…)

object2 = Instruction2(…)

object3 = Instruction3(…)

object4 = Instruction4(…)

…



Instruction specifications

• CreateShape() -> Shape

• CopyShape(reference) -> Shape

• Construct(blueprint, parameters…) -> Construction

• Evaluate(construction) -> None

• Find(supershape, search shape, transform type) -> List<Subshape>

• Replace(subshape list, replacement shape) -> Shape

• PickRandom(shape list) -> Shape

• PickConstruction(supershape, search shape, transform type, construct1, construct2) -> Construct



Create Shape

Inputs: None

Returns: Shape

Description: Creates a shape provided by the 

programmer. In a future version, we want that if 

no shape is provided, then the user of the 

program may provide a shape at runtime.

Copy Shape

Inputs: 1) a shape

Returns: Shape

Description: Creates a copy of the input shape. This may be 

used to “move” a shape from one construction to another.



Create Construction

Inputs: 1) a blueprint, 2) a mapping from input names 

to objects

Returns: Construction

Description: Creates an instance of a construction 

based on the input blueprint. The blueprint has a set 

of named input parameters and the parameter 

objects of the created construction are initialized 

using the input mapping from names to objects. Note, 

the instructions of a construction are not executed 

when the construction is created. The evaluate 

instruction must be used to trigger the execution of a 

construction. This allows the execution of 

constructions to be chosen conditionally.

Evaluate

Inputs: 1) a construction

Returns: None

Description: Executes the instructions of the input 

construction. The execution of the current construction 

halts until the execution of the input construction is 

complete.



Find

Inputs: 1) a supershape, 2) a template shape, 3) a 

transform type

Returns: List of subshapes

Description: Finds and returns a list of subshapes, of the 

input supershape, that are equivalent to the template 

shape under the specified transformation type. Currently 

supported transformations include identity, translation, 

rigid, isometry, and similarity transformations.

Replace

Inputs: 1) a subshape, 2) a replacement shape

Returns: Shape

Description: Creates a shape that is the subshape’s 

supershape, minus the subshape, unioned with the 

replacement shape transformed by the subshape’s 

transformation.



Pick Random

Inputs: 1) a shape list

Returns: Shape

Description: Picks and returns a random shape from the 

input shape list. If the output of a find is to be used in a 

replace operation, then a single subshape must be picked 

from the list of found subshapes. Currently, we only support 

random picking, but if the programmer can be guarantee 

that only single subshapes are ever found, then this 

instruction will not cause a program to have non-

deterministic results.

Pick Construction

Inputs: 1) a supershape, 2) a template shape, 3) a 

transform type, 4) a “true” construction, 5) a “false” 

construction

Returns: Construction

Description: Returns the “true” construction if the 

input supershape contains the template shape under 

the specified transformation type. Otherwise, the 

“false” construction is returned. This instruction is 

comparable to the conditional ternary operator in 

many other programming languages. Recursive 

constructions can be implemented by picking and 

evaluating a construction of the same type as the 

construction containing this instruction.



Completed features

• Simple set of instructions that could be implemented visually

• ShapeScript interpreter

• Example programs

• Future features: 
• Graphical user interface for visual scripting

• Many other possible instructions (replace all, manual find, etc.)

• More transformations



Example: Looping program

• Points simulate numbers. Find & replace simulates arithmetic.

Main()

i = CreateShape()

c = Construct(Loop, i)

Evaluate(c)

Loop(i)

zero = CreateShape()

negative_one = CreateShape()

numbers = Find(i, zero, Translation)

number = PickRandom(numbers)

i_minus_one = Replace(number, negative_one)

noop = Construct(Return, i_minus_one)

recurse = Construct(Loop, i_minus_one)

picked = PickConstruction(zero, i_minus_one, Identity, noop, recurse)

Evaluate(picked)

result = CopyShape(picked.result)

Return(input)

result = input



Example: Peg solitaire board

Hole Peg


	Slide 1: ShapeScript: Toward shape-based visual programming
	Slide 2: Goal = Visual programming
	Slide 3: Elements of programming languages
	Slide 4: What is a ShapeScript program?
	Slide 5: Instruction specifications
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Completed features
	Slide 11: Example: Looping program
	Slide 12: Example: Peg solitaire board

